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1.4 Continuity and One-Sided Limits

Determine continuity at a point and continuity on an open interval.
Determine one-sided limits and continuity on a closed interval.
Use properties of continuity.
Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval
In mathematics, the term continuous has much the same meaning as it has in everyday
usage. Informally, to say that a function is continuous at means that there is no
interruption in the graph of at That is, its graph is unbroken at and there are no
holes, jumps, or gaps. Figure 1.25 identifies three values of at which the graph of is
not continuous. At all other points in the interval the graph of is uninterrupted
and continuous.

Three conditions exist for which the graph of is not continuous at 
Figure 1.25

In Figure 1.25, it appears that continuity at can be destroyed by any one of
three conditions.

1. The function is not defined at 

2. The limit of does not exist at 

3. The limit of exists at but it is not equal to 

If none of the three conditions is true, then the function is called continuous at as 
indicated in the important definition below.
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Definition of Continuity

Continuity at a Point
A function is continuous at when these three conditions are met.

1. is defined.

2. exists.

3.

Continuity on an Open Interval
A function is continuous on an open interval when the function is 
continuous at each point in the interval. A function that is continuous on the 
entire real number line is everywhere continuous.���, ��

�a, b�

lim
x→c

 f �x� � f �c�

lim
x→c

 f �x�
f�c�

cfFOR FURTHER INFORMATION
For more information on the 
concept of continuity, see the 
article “Leibniz and the Spell of
the Continuous” by Hardy Grant 
in The College Mathematics
Journal. To view this article,
go to MathArticles.com.

Exploration

Informally, you might say
that a function is continuous
on an open interval when its
graph can be drawn with a
pencil without lifting the
pencil from the paper. Use 
a graphing utility to graph
each function on the given
interval. From the graphs,
which functions would you
say are continuous on the
interval? Do you think you
can trust the results you
obtained graphically?
Explain your reasoning.

Function Interval

a.

b.

c.

d. ��3, 3�y �
x2 � 4
x � 2

���, ��y �
sin x

x

��3, 3�y �
1

x � 2

��3, 3�y � x2 � 1
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Consider an open interval that contains a real number If a function is 
defined on (except possibly at ), and is not continuous at then is said to 
have a discontinuity at Discontinuities fall into two categories: removable and 
nonremovable. A discontinuity at is called removable when can be made continuous
by appropriately defining (or redefining) For instance, the functions shown in
Figures 1.26(a) and (c) have removable discontinuities at and the function shown in
Figure 1.26(b) has a nonremovable discontinuity at 

Continuity of a Function

Discuss the continuity of each function.

a. b. c. d.

Solution

a. The domain of is all nonzero real numbers. From Theorem 1.3, you can conclude
that is continuous at every -value in its domain. At has a nonremovable
discontinuity, as shown in Figure 1.27(a). In other words, there is no way to define

so as to make the function continuous at 

b. The domain of is all real numbers except From Theorem 1.3, you can 
conclude that is continuous at every -value in its domain. At the function
has a removable discontinuity, as shown in Figure 1.27(b). By defining as 2, the
“redefined” function is continuous for all real numbers.

c. The domain of is all real numbers. The function is continuous on and
and, because

is continuous on the entire real number line, as shown in Figure 1.27(c).

d. The domain of is all real numbers. From Theorem 1.6, you can conclude that the
function is continuous on its entire domain, as shown in Figure 1.27(d).

(a) Nonremovable discontinuity at (b) Removable discontinuity at 

(c) Continuous on entire real number line (d) Continuous on entire real number line

Figure 1.27
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(a) Removable discontinuity
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(b) Nonremovable discontinuity

x
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(c) Removable discontinuity

Figure 1.26

REMARK Some people may
refer to the function in Example
1(a) as “discontinuous.” We
have found that this terminology
can be confusing. Rather than
saying that the function is 
discontinuous, we prefer to 
say that it has a discontinuity 
at x � 0.
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One-Sided Limits and Continuity on a Closed Interval
To understand continuity on a closed interval, you first need to look at a different type
of limit called a one-sided limit. For instance, the limit from the right (or right-hand
limit) means that approaches from values greater than [see Figure 1.28(a)]. This
limit is denoted as

Limit from the right

Similarly, the limit from the left (or left-hand limit) means that approaches from
values less than [see Figure 1.28(b)]. This limit is denoted as

Limit from the left

One-sided limits are useful in taking limits of functions involving radicals. For instance,
if is an even integer, then

A One-Sided Limit

Find the limit of as approaches from the right.

Solution As shown in Figure 1.29, the limit as approaches from the right is

One-sided limits can be used to investigate the behavior of step functions. One
common type of step function is the greatest integer function defined as

Greatest integer function

For instance, and 

The Greatest Integer Function

Find the limit of the greatest integer function
as approaches 0 from the left and

from the right.

Solution As shown in Figure 1.30, the limit as
approaches 0 from the left is

and the limit as approaches 0 from the right is

The greatest integer function has a discontinuity 
at zero because the left- and right-hand limits at 
zero are different. By similar reasoning, you 
can see that the greatest integer function has a discontinuity at any integer n.

lim
x→0�

 �x� � 0.

x

lim
x→0�

 �x� � �1

x

xf�x� � �x�

��2.5� � �3.�2.5� � 2

     �x� � greatest integer n such that n � x.     

�x�,

lim
x→�2�

 	4 � x2 � 0.

�2x

�2xf�x� � 	4 � x2

     lim
x→0�

 n	x � 0.     

n

     lim
x→c�

 f�x� � L.     

c
cx

     lim
x→c�

 f�x� � L.     

ccx
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(b) Limit as approaches from the left.

Figure 1.28
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(a) Limit as approaches from the right.cx
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The limit of as approaches 
from the right is 0.
Figure 1.29
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Greatest integer function
Figure 1.30
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When the limit from the left is not equal to the limit from the right, the (two-sided)
limit does not exist. The next theorem makes this more explicit. The proof of this 
theorem follows directly from the definition of a one-sided limit.

The concept of a one-sided limit allows you to extend the definition of continuity
to closed intervals. Basically, a function is continuous on a closed interval when it is
continuous in the interior of the interval and exhibits one-sided continuity at the 
endpoints. This is stated formally in the next definition.

Similar definitions can be made to cover continuity on intervals of the form 
and that are neither open nor closed, or on infinite intervals. For example,

is continuous on the infinite interval and the function

is continuous on the infinite interval 

Continuity on a Closed Interval

Discuss the continuity of

Solution The domain of is the closed interval At all points in the open
interval the continuity of follows from Theorems 1.4 and 1.5. Moreover,
because

Continuous from the right

and

Continuous from the left

you can conclude that is continuous on the closed interval as shown in 
Figure 1.32.
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lim
x→�1�

 	1 � x2 � 0 � f��1�

f��1, 1�,

�1, 1�.f

f�x� � 	1 � x2.

���, 2�.

g�x� � 	2 � x


0, ��,

f�x� � 	x


a, b�
�a, b�
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THEOREM 1.10 The Existence of a Limit

Let be a function, and let and be real numbers. The limit of as 
approaches is if and only if

and lim
x→c�

 f �x� � L.lim
x→c�

 f�x� � L

Lc
xf�x�Lcf

Definition of Continuity on a Closed Interval

A function is continuous on the closed interval when is continuous 
on the open interval and

and

The function is continuous from the right at and continuous from the left
at (see Figure 1.31).b

af

lim
x→b�

 f�x� � f�b�.

lim
x→a�

 f�x� � f�a�

�a, b�
f[a, b]f

x

1

1−1

f (x) =     1 − x2

y

is continuous on 
Figure 1.32


�1, 1�.f

x

a b

y

Continuous function on a closed interval
Figure 1.31
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The next example shows how a one-sided limit can be used to determine the value
of absolute zero on the Kelvin scale.

Charles’s Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures very
close to 0 K have been produced in laboratories, absolute zero has never been attained.
In fact, evidence suggests that absolute zero cannot be attained. How did scientists
determine that 0 K is the “lower limit” of the temperature of matter? What is absolute
zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French
physicist Jacques Charles (1746–1823). Charles discovered that the volume of gas at a
constant pressure increases linearly with the temperature of the gas. The table illustrates
this relationship between volume and temperature. To generate the values in the table,
one mole of hydrogen is held at a constant pressure of one atmosphere. The volume 
is approximated and is measured in liters, and the temperature is measured in degrees
Celsius.

The points represented by the table are shown 
in Figure 1.33. Moreover, by using the points 
in the table, you can determine that and 
are related by the linear equation

Solving for you get an equation for the 
temperature of the gas.

By reasoning that the volume of the gas 
can approach 0 (but can never equal or 
go below 0), you can determine that the 
“least possible temperature” is

Use direct substitution.

So, absolute zero on the Kelvin scale 0 K is approximately on the Celsius
scale.

The table below shows the temperatures in Example 5 converted to the Fahrenheit
scale. Try repeating the solution shown in Example 5 using these temperatures and 
volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

�273.15���

 � �273.15.

 �
0 � 22.4334

0.08213

lim
V→0�

T � lim
V→0�

 
V � 22.4334

0.08213

T �
V � 22.4334

0.08213

T,

V � 0.08213T � 22.4334.

VT

T
V
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T �40 �20 0 20 40 60 80

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

T �40 �4 32 68 104 140 176

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

REMARK Charles’s Law 
for gases (assuming constant
pressure) can be stated as

where is volume, is a 
constant, and is temperature. T

kV

V � kT

T
−100−200−300

5

10

15

25

30

100

V = 0.08213T + 22.4334

(−273.15, 0)

V

The volume of hydrogen gas depends
on its temperature.
Figure 1.33

In 2003, researchers at the
Massachusetts Institute of
Technology used lasers and 
evaporation to produce a super-
cold gas in which atoms overlap.
This gas is called a Bose-Einstein
condensate. They measured a
temperature of about 450 pK
(picokelvin), or approximately 

273.14999999955°C. (Source:
Science magazine, September 12,
2003)

�

Massachusetts Institute of Technology(MIT)
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Properties of Continuity
In Section 1.3, you studied several properties of limits. Each of those properties yields
a corresponding property pertaining to the continuity of a function. For instance,
Theorem 1.11 follows directly from Theorem 1.2.

It is important for you to be able to recognize functions that are continuous at every
point in their domains. The list below summarizes the functions you have studied so far
that are continuous at every point in their domains.

1. Polynomial:

2. Rational:

3. Radical:

4. Trigonometric: sin cos tan cot sec csc

By combining Theorem 1.11 with this list, you can conclude that a wide variety of 
elementary functions are continuous at every point in their domains.

Applying Properties of Continuity

See LarsonCalculus.com for an interactive version of this type of example.

By Theorem 1.11, it follows that each of the functions below is continuous at every
point in its domain.

The next theorem, which is a consequence of Theorem 1.5, allows you to determine
the continuity of composite functions such as

and

Proof By the definition of continuity, and 

Apply Theorem 1.5 with to obtain So,

is continuous at 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

c.� f � g��x� � f�g�x��
lim
x→c

 f�g�x�� � f�limx→c
 g�x�� � f�g�c��.L � g�c�

lim
x→g�c�

 f �x� � f �g�c��.lim
x→c

 g�x� � g�c�

f�x� � tan 
1
x
.f �x� � 	x2 � 1,f �x� � sin 3x,

f�x� �
x2 � 1
cos x

f �x� � 3 tan x,f�x� � x � sin x,

xx,x,x,x,x,

f �x� � n	x

q�x� 	 0r�x� �
p�x�
q�x�,

p�x� � anx
n � an�1x

n�1 � .  .  . � a1x � a0
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THEOREM 1.11 Properties of Continuity

If is a real number and and are continuous at then the functions 
listed below are also continuous at 

1. Scalar multiple: 2. Sum or difference:

3. Product: 4. Quotient:

A proof of this theorem is given in Appendix A. 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

g�c� 	 0
f
g

,fg

f ± gbf

c.
x � c,gfb

THEOREM 1.12 Continuity of a Composite Function

If is continuous at and is continuous at then the composite function
given by is continuous at c.� f � g��x� � f�g�x��

g�c�,fcgREMARK One consequence
of Theorem 1.12 is that when 

and satisfy the given 
conditions, you can determine
the limit of as 
approaches to be

lim
x→c

 f �g�x�� � f �g�c��.

c
xf �g�x��

gf

AUGUSTIN-LOUIS CAUCHY
(1789–1857)

The concept of a continuous 
function was first introduced by
Augustin-Louis Cauchy in 1821.
The definition given in his text 
Cours d’Analyse stated that 
indefinite small changes in 
were the result of indefinite small
changes in “… will be called
a continuous function if … the
numerical values of the difference

decrease 
indefinitely with those of ….”
See LarsonCalculus.com to read
more of this biography.



f �x � 
� � f �x�

f �x�x.

y

© Bettmann/CORBIS
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Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. b. c.

Solution

a. The tangent function is undefined at

is an integer.

At all other points, is continuous. So, is continuous on the open
intervals

as shown in Figure 1.34(a).

b. Because is continuous except at and the sine function is continuous
for all real values of it follows from Theorem 1.12 that

is continuous at all real values except At the limit of does not exist
(see Example 5, Section 1.2). So, is continuous on the intervals and

as shown in Figure 1.34(b).

c. This function is similar to the function in part (b) except that the oscillations are
damped by the factor Using the Squeeze Theorem, you obtain

and you can conclude that

So, is continuous on the entire real number line, as shown in Figure 1.34(c).h

lim
x→0

 h�x� � 0.

x 	 0�
x
 � x sin 
1
x

� 
x
,
x.

�0, ��,
���, 0�g

g�x�x � 0,x � 0.

y � sin 
1
x

x,
x � 0y � 1�x

.  .  . , ��
3�

2
, �

�

2�, ��
�

2
, 

�

2�, ��

2
, 

3�

2 �, .  .  .

f�x� � tan xf

nx �
�

2
� n�,

f�x� � tan x

h�x� � �x sin 1
        x

,

0,
    

x 	 0

x � 0
g�x� � �sin

 1
     x

,

0,

    x 	 0

x � 0
f�x� � tan x
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x

4

3

2

1

−3

−4

−π π

f (x) = tan x

y

(a) is continuous on each open interval in
its domain.

Figure 1.34

f

x

1

−1

−1 1

y

g(x) = 
sin    , x ≠ 0

0,

1
x

x = 0

(b) is continuous on and �0, ��.���, 0�g

x

1

−1

−1 1

y = ⎪x⎪

y

h(x) = 
x = 00,

x sin    , x ≠ 01
x

y = −⎪x⎪

(c) is continuous on the entire real number line.h
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The Intermediate Value Theorem
Theorem 1.13 is an important theorem concerning the behavior of functions that are
continuous on a closed interval.

As an example of the application of the Intermediate Value Theorem, consider a
person’s height. A girl is 5 feet tall on her thirteenth birthday and 5 feet 7 inches tall on
her fourteenth birthday. Then, for any height between 5 feet and 5 feet 7 inches, there
must have been a time when her height was exactly This seems reasonable because
human growth is continuous and a person’s height does not abruptly change from one
value to another.

The Intermediate Value Theorem guarantees the existence of at least one number 
in the closed interval There may, of course, be more than one number such that

as shown in Figure 1.35. A function that is not continuous does not necessarily exhibit
the intermediate value property. For example, the graph of the function shown in 
Figure 1.36 jumps over the horizontal line

and for this function there is no value of in such that 

is continuous on is not continuous on 
There exist three ’s such that There are no ’s such that 

Figure 1.35 Figure 1.36

The Intermediate Value Theorem often can be used to locate the zeros of a function
that is continuous on a closed interval. Specifically, if is continuous on and 
and differ in sign, then the Intermediate Value Theorem guarantees the existence of
at least one zero of in the closed interval 
a, b�.f

f�b�
f�a�
a, b�f

f �c� � k.�c
f �c� � k.�c


a, b�.f
a, b�.f

x

b

k

a

f (a)

f (b)

y

x

k

b
c3c2a

c1

f (a)

f (b)

y

f�c� � k.
a, b�c

y � k

f �c� � k

c
a, b�.
c

h.t
h
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THEOREM 1.13 Intermediate Value Theorem

If is continuous on the closed interval and is any number
between and then there is at least one number in such that

f�c� � k.


a, b�cf�b),f �a�
kf �a� 	 f �b�,
a, b�,f

REMARK The Intermediate Value Theorem tells you that at least one number 
exists, but it does not provide a method for finding Such theorems are called 
existence theorems. By referring to a text on advanced calculus, you will find that 
a proof of this theorem is based on a property of real numbers called completeness. The
Intermediate Value Theorem states that for a continuous function if takes 
on all values between and then must take on all values between and  f�b�. f �a� f�x�b,a

xf,

c.
c
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An Application of the IntermediateValueTheorem

Use the Intermediate Value Theorem to show that the polynomial function

has a zero in the interval 

Solution Note that is continuous on the closed interval Because

and

it follows that and You can therefore apply the Intermediate Value
Theorem to conclude that there must be some in such that

has a zero in the closed interval 

as shown in Figure 1.37.

is continuous on with and 
Figure 1.37

The bisection method for approximating the real zeros of a continuous function is
similar to the method used in Example 8. If you know that a zero exists in the closed
interval then the zero must lie in the interval or 
From the sign of you can determine which interval contains the zero. By
repeatedly bisecting the interval, you can “close in” on the zero of the function.

f�
a � b��2�,

�a � b��2, b�.
a, �a � b��2�
a, b�,

f �1� > 0.f �0� < 0
0, 1�f

x

1

1

2

−1

−1
(c, 0)

(1, 2)

(0, −1)

y f (x) = x3 + 2x − 1


0, 1�.ff�c� � 0


0, 1�c
f�1�  >  0.f�0�  <  0

f �1� � 13 � 2�1� � 1 � 2f�0� � 03 � 2�0� � 1 � �1


0, 1�.f


0, 1�.

f�x� � x3 � 2x � 1
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TECHNOLOGY You can use the root or zero feature of a graphing utility to
approximate the real zeros of a continuous function. Using this feature, the zero of
the function in Example 8, is approximately 0.453, as shown
in Figure 1.38.

Zero of 
Figure 1.38

f �x� � x3 � 2x � 1

−3 3

−2

2

Zero
X=.45339765 Y=0

 f�x� � x3 � 2x � 1,
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1.4 Continuity and One-Sided Limits 79

Limits and Continuity In Exercises 1–6, use the graph to
determine the limit, and discuss the continuity of the function.

(a) (b) (c)

1. 2.

3. 4.

5. 6.

Finding a Limit In Exercises 7–26, find the limit (if it
exists). If it does not exist, explain why.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16.

17. where 

18. where 

19. where 

20. where 

21. 22.

23. 24.

25. 26.

Continuity of a Function In Exercises 27–30, discuss the
continuity of each function.

27. 28.

29. 30.

Continuity on a Closed Interval In Exercises 31–34,
discuss the continuity of the function on the closed interval.

Function Interval

31.

32.

33.

34.

Removable and Nonremovable Discontinuities In
Exercises 35–60, find the -values (if any) at which is not 
continuous. Which of the discontinuities are removable?

35. 36.

37. 38. f �x� � x2 � 4x � 4f �x� � x2 � 9

f �x� �
4

x � 6
f �x� �

6
x

fx


�1, 2�g�x� �
1

x2 � 4


�1, 4�f �x� � �3 � x,

3 �
1
2 x,

   
x � 0

x > 0


�3, 3�f �t� � 3 � 	9 � t2


�7, 7�g�x� � 	49 � x2

x

−2

−2

−3

−3

1

1

2

2

3

3

y

x
−1−2

−3

−3

1

1

2

2

3

3

y

f �x� � �x,
2,
2x � 1,

   x < 1
   x � 1
   x > 1

f �x� �
1
2�x� � x

x
−1−2

−3

−3

1

1

2

2

3

3

y

x

−1

−2

−3

−3

1

1

2

3

3

y

f �x� �
x2 � 1
x � 1

f �x� �
1

x2 � 4

lim
x→1�1 � ��

x
2��lim

x→3
 �2 � ��x� �

lim
x→2�

�2x � �x��lim
x→4�

�5�x� � 7�

lim
x→��2

 sec xlim
x→�

 cot x

f �x� � �x,            x � 1
1 � x,     x > 1

lim
x→1�

 f �x�,

f �x� � �x3 � 1,    x < 1
x � 1,     x � 1

lim
x→1

 f �x�,

f �x� � �x2 � 4x � 6,       x < 3
�x2 � 4x � 2,   x � 3

lim
x→3

 f �x�,

f �x� � �
x � 2

2
,       x � 3

12 � 2x
3

,   x > 3
 lim

x→3�
 f �x�,

lim
�x→0�

 
�x � �x�2 � x � �x � �x2 � x�

�x

lim
�x→0�

 

1
x � �x

�
1
x

�x

lim
x→10�

 
x � 10

x � 10

lim
x→0�

 
x

x

lim
x→4�

 
	x � 2
x � 4

lim
x→�3�

 
x

	x2 � 9

lim
x→4�

 
4 � x

x2 � 16
lim

x→5�
 

x � 5

x2 � 25

lim
x→2�

 
2

x � 2
lim

x→8�
 

1

x � 8

x
1

2

3

4
c = −1

(−1, 2)

(−1, 0)−3

y

x
1

1

2

2 3 4 5 6−1
−2
−3

(2, 3)

(2, −3)

c = 2

y

x

y

(−3, 4)

(−3, 3)

−1−2−3−4−5

2

3

4

5
c = −3

x

y

2 4 6

4

c = 3

(3, 1)

(3, 0)

c = −2

(−2, −2)

x

y

−2
−1

−2

1

2

c = 4

(4, 3)

1 2 3 4 5−1

1

2

3

4

5

x

y

lim
x→c

 f �x�lim
x→c�

 f �x�lim
x→c�

 f �x�

1.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51.

52.

53.

54.

55.

56.

57. 58.

59. 60.

Making a Function Continuous In Exercises 61–66, find
the constant or the constants and such that the function
is continuous on the entire real number line.

61. 62.

63. 64.

65.

66.

Continuity of a Composite Function In Exercises 67–72,
discuss the continuity of the composite function 

67. 68.

69. 70.

71. 72.

Finding Discontinuities In Exercises 73–76, use a graphing
utility to graph the function. Use the graph to determine any 
-values at which the function is not continuous.

73. 74.

75.

76.

Testing for Continuity In Exercises 77–84, describe the
interval(s) on which the function is continuous.

77. 78.

79. 80.

81. 82.

83. 84.

Writing In Exercises 85 and 86, use a graphing utility to
graph the function on the interval Does the graph of
the function appear to be continuous on this interval? Is the
function continuous on Write a short paragraph about
the importance of examining a function analytically as well as
graphically.

85. 86.

Writing In Exercises 87–90, explain why the function has a
zero in the given interval.

Function Interval

87.

88.

89.

90.

Using the Intermediate Value Theorem In Exercises
91–94, use the Intermediate Value Theorem and a graphing
utility to approximate the zero of the function in the interval

Repeatedly “zoom in” on the graph of the function to
approximate the zero accurate to two decimal places. Use the
zero or root feature of the graphing utility to approximate the
zero accurate to four decimal places.

91.

92. f �x� � x4 � x2 � 3x � 1

f �x� � x3 � x � 1

[0, 1].


1, 4�f �x� � �
5
x

� tan��x
10 �


0, ��f �x� � x2 � 2 � cos x


0, 1�f �x� � x3 � 5x � 3


1, 2�f �x� �
1
12 x 4 � x3 � 4

f �x� �
x3 � 8
x � 2

f �x� �
sin x

x

[�4, 4]?

[�4, 4].

f �x� � �2x � 4,

1,

x 	 3

x � 3
f �x� � �x2 � 1

x � 1
,    x 	 1

2,             x � 1

f �x� � cos 
1
x

f �x� � sec 
�x
4

f �x� � x	x � 3f �x� � 3 � 	x

f �x� �
x � 1
	x

f �x� �
x

x2 � x � 2

f �x� � �cos x � 1
x

,    x < 0

5x,                x � 0

g�x� � �x2 � 3x,

2x � 5,

x > 4

x � 4

h�x� �
1

x2 � 2x � 15
f �x� � �x� � x

x

g�x� � x2g�x� �
x
2

 f �x� � sin x f �x� � tan x

g�x� � x � 1g�x� � x2 � 5

 f �x� �
1
	x

 f �x� �
1

x � 6

g�x� � x3g�x� � x � 1

 f �x� � 5x � 1 f �x� � x2

h�x� � f �g�x��.

g �x� � �x2 � a2

x � a
,    x 	 a

8,              x � a

f �x� � �2,
ax � b,
�2,

x � �1
�1 < x < 3
x � 3

g�x� � �4 sin x
x

,    x < 0

a � 2x,   x � 0
f �x� � �x3,

ax2,
x � 2
x > 2

f �x� � �3x3,
ax � 5,

   x � 1
   x > 1

f �x� � �3x2,
ax � 4,

   x � 1
   x < 1

b,aa,

f �x� � 5 � �x�f �x� � �x � 8�

f �x� � tan 
�x
2

f �x� � csc 2x

f �x� � �csc � x

        6 
,

2,
   


x � 3
 � 2


x � 3
 > 2

f �x� � �tan � x

        4 
,

x,
   


x
 < 1


x
 � 1

f �x� � ��2x,
x2 � 4x � 1,

x � 2
x > 2

f �x� � �
1
2 x � 1,

3 � x,

x � 2

x > 2

f �x� � ��2x � 3,
x2,

x < 1
x � 1

f �x� � �x,
x2,

x � 1
x > 1

f �x� � 
x � 5

x � 5

f �x� � 
x � 7

x � 7

f �x� �
x � 2

x2 � x � 6
f �x� �

x � 2
x2 � 3x � 10

f �x� �
x � 5

x2 � 25
f �x� �

x
x2 � 1

f �x� �
x

x2 � 4
f �x� �

x
x2 � x

f �x� � cos 
�x
2

f �x� � 3x � cos x

f �x� �
1

x2 � 1
f �x� �

1
4 � x2
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1.4 Continuity and One-Sided Limits 81

93.

94.

Using the Intermediate Value Theorem In Exercises
95–98, verify that the Intermediate Value Theorem applies to
the indicated interval and find the value of guaranteed by the
theorem.

95.

96.

97.

98.

True or False? In Exercises 103–106, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

103. If and then is continuous at 

104. If for and then either or is
not continuous at 

105. A rational function can have infinitely many -values at
which it is not continuous.

106. The function

is continuous on 

107. Think About It Describe how the functions

and

differ.

109. Telephone Charges A long distance phone service
charges $0.40 for the first 10 minutes and $0.05 for each
additional minute or fraction thereof. Use the greatest integer
function to write the cost of a call in terms of time (in
minutes). Sketch the graph of this function and discuss its
continuity.

tC

g�x� � 3 � ��x� f �x� � 3 � �x�

���, ��.

 f �x� � 
x � 1

x � 1

x

c.
gff �c� 	 g�c�,x 	 cf �x� � g�x�

c.ff �c� � L,lim
x→c

 f �x� � L

f �c� � 6�5
2

, 4�,f �x� �
x2 � x
x � 1

,

f �c� � 4
0, 3�,f �x� � x3 � x2 � x � 2,

f �c� � 0
0, 3�,f �x� � x2 � 6x � 8,

f �c� � 11
0, 5�,f �x� � x2 � x � 1,

c

h�
� � tan 
 � 3
 � 4

g�t� � 2 cos t � 3t

WRITING ABOUT CONCEPTS
99. Using the Definition of Continuity State how

continuity is destroyed at for each of the following
graphs.

(a) (b)

(c) (d)

100. Sketching a Graph Sketch the graph of any 
function such that

and

Is the function continuous at Explain.

101. Continuity of Combinations of Functions If
the functions and are continuous for all real is 
always continuous for all real Is always continuous
for all real If either is not continuous, give an example
to verify your conclusion.

102. Removable and Nonremovable Discontinuities

Describe the difference between a discontinuity that 
is removable and one that is nonremovable. In your 
explanation, give examples of the following descriptions.

(a) A function with a nonremovable discontinuity at

(b) A function with a removable discontinuity at 

(c) A function that has both of the characteristics
described in parts (a) and (b)

x � �4

x � 4

x?
f�gx?

f � gx,gf

x � 3?

lim
x→3�

 f �x� � 0.lim
x→3�

 f �x� � 1

f

xc

y

xc

y

xc

y

xc

y

x � c

108. HOW DO YOU SEE IT? Every day you 
dissolve 28 ounces of chlorine in a swimming
pool. The graph shows the amount of chlorine 

in the pool after days. Estimate and interpret
and 

y

t
6 754321

140

112

84

56

28

lim
t→4�

 f �t�.lim
t→4�

 f �t�
tf �t�

The number of units in inventory in a small company is 
given by

where is the time in 
months. Sketch the 
graph of this function 
and discuss its continuity. 
How often must this 
company replenish its 
inventory?

t

N�t� � 25�2�t � 2
2 � � t�

110. Inventory Management

Christian Delbert/Shutterstock.com
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82 Chapter 1 Limits and Their Properties

111. Déjà Vu At 8:00 A.M. on Saturday, a man begins running
up the side of a mountain to his weekend campsite (see 
figure). On Sunday morning at 8:00 A.M., he runs back down
the mountain. It takes him 20 minutes to run up, but only 
10 minutes to run down. At some point on the way down, he
realizes that he passed the same place at exactly the same
time on Saturday. Prove that he is correct. [Hint: Let 
and be the position functions for the runs up and down,
and apply the Intermediate Value Theorem to the function

]

112. Volume Use the Intermediate Value Theorem to show that
for all spheres with radii in the interval there is one
with a volume of 1500 cubic centimeters.

113. Proof Prove that if is continuous and has no zeros on
then either

for all in or for all in 

114. Dirichlet Function Show that the Dirichlet function

is not continuous at any real number.

115. Continuity of a Function Show that the function

is continuous only at (Assume that is any nonzero
real number.)

116. Signum Function The signum function is defined by

.

Sketch a graph of sgn and find the following (if possible).

(a) (b) (c)

117. Modeling Data The table lists the speeds (in feet per 
second) of a falling object at various times (in seconds).

(a) Create a line graph of the data.

(b) Does there appear to be a limiting speed of the object? If
there is a limiting speed, identify a possible cause.

118. Creating Models A swimmer crosses a pool of width 
by swimming in a straight line from to . (See 
figure.)

(a) Let be a function defined as the -coordinate of the point
on the long side of the pool that is nearest the swimmer
at any given time during the swimmer’s crossing of the
pool. Determine the function and sketch its graph. Is 
continuous? Explain.

(b) Let be the minimum distance between the swimmer
and the long sides of the pool. Determine the function 
and sketch its graph. Is continuous? Explain.

119. Making a Function Continuous Find all values of 
such that is continuous on 

120. Proof Prove that for any real number there exists in
such that 

121. Making a Function Continuous Let

What is the domain of How can you define at in
order for to be continuous there?

122. Proof Prove that if

then is continuous at 

123. Continuity of a Function Discuss the continuity of the
function 

124. Proof

(a) Let and be continuous on the closed interval
If and prove that there

exists between and such that 

(b) Show that there exists in such that Use
a graphing utility to approximate to three decimal places.c

cos x � x.
0, �2�c

f1�c� � f2�c�.bac
f1�b� > f2�b�,f1�a� <  f2�a�
a, b�.

f2�x�f1�x�

h�x� � x �x�.

c.f

lim
�x→0

 f �c � �x� � f �c�

f
x � 0ff ?

c > 0. f �x� �
	x � c2 � c

x
,

tan x � y.����2, ��2�
xy

 f �x� � �1 � x2,
x,

x � c
x > c

���, ��.f
c

g
g

g

ff

yf

x
(0, 0)

(2b, b)

b

y

�2b, b��0, 0�
b

t 0 5 10 15 20 25 30

S 0 48.2 53.5 55.2 55.9 56.2 56.3

t
S

lim
x→0

 sgn�x�lim
x→0�

 sgn�x�lim
x→0�

 sgn�x�
�x�

sgn�x� � ��1,
0,
1,

x < 0
x � 0
x > 0

kx � 0.

f �x� � �0,
kx,

    if x is rational
    if x is irrational

f �x� � �0,
1,

   if x is rational
   if x is irrational


a, b�.xf �x� < 0
a, b�xf �x�  >  0


a, b�,
f


5, 8�,

Saturday 8:00 A.M. Sunday 8:00 A.M.
Not drawn to scale

f �t� � s�t� � r�t�.

r�t�
s�t�

PUTNAM EXAM CHALLENGE
125. Prove or disprove: If and are real numbers with 

and then 

126. Determine all polynomials such that

and 

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

P�0� � 0.P�x2 � 1� � �P�x��2 � 1

P�x�
y� y � 1� � x2.y� y � 1� � �x � 1�2,

y � 0yx
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